Duality for multiobjective optimization problems with convex objective functions and D.C. constraints
نویسندگان
چکیده
In this paper we provide a duality theory for multiobjective optimization problems with convex objective functions and finitely many D.C. constraints. In order to do this, we study first the duality for a scalar convex optimization problem with inequality constraints defined by extended real-valued convex functions. For a family of multiobjective problems associated to the initial one we determine then, by means of the scalar duality results, their multiobjective dual problems. Finally, we consider as a special case the duality for the convex multiobjective optimization problem with convex constraints.
منابع مشابه
An algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملConjugate duality for multiobjective composed optimization problems
Given a multiobjective optimization problem with the components of the objective function as well as the constraint functions being composed convex functions, we introduce, by using the Fenchel-Moreau conjugate of the functions involved, a suitable dual problem to it. Under a standard constraint qualification and some convexity as well as monotonicity conditions we prove the existence of strong...
متن کاملDuality and optimality in multiobjective optimization
Report The aim of this work is to make some investigations concerning duality for mul-tiobjective optimization problems. In order to do this we study first the duality for scalar optimization problems by using the conjugacy approach. This allows us to attach three different dual problems to a primal one. We examine the relations between the optimal objective values of the duals and verify, unde...
متن کاملOptimality conditions for weak efficiency to vector optimization problems with composed convex functions
We consider a convex optimization problem with a vector valued function as objective function and convex cone inequality constraints. We suppose that each entry of the objective function is the composition of some convex functions. Our aim is to provide necessary and sufficient conditions for the weakly efficient solutions of this vector problem. Moreover, a multiobjective dual treatment is giv...
متن کامل